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SUMMARY 

In this paper we present a scheme for the numerical generation of boundary-fitted grids that adapt to both 
water depth and depth gradient. The scheme can be used in arbitrary two-dimensional regions and is based 
on the application of the well-known control function approach to generate adaptive grids. The method 
includes the evaluation of water depths at the grid points from a known distribution of depth points and 
their associated depths plus a procedure for the numerical evaluation of depth gradients. It is demonstrated 
that the smoothness of the grid can be enhanced by introducing a suitable filtering technique. 
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1. INTRODUCTION 

The use of boundary-fitted grids for the solution of fluid dynamics problems using finite difference 
approximations has been given increased attention during the last few years. 1-4 It is commonly 
agreed that such grids perform much better than conventional Cartesian grids and preliminary 
results show that flow solutions obtained on these grids have an accuracy comparable to that of 
finite element  method^,^ the latter requiring much more computational effort. Furthermore, it is 
possible to write grid generation software that is applicable to arbitrary flow geometries, 
particularly if the region is divided into contiguous subregions. 

The purpose of this work is to develop methods to generate boundary-fitted grids for use in 
computational hydraulics. In this field of study it is common practice to average the three- 
dimensional flow equations over the water depth, thus resulting in a two-dimensional system. An 
accurate numerical solution of such problems requires a grid that clusters in regions of large 
water depth and in regions of large depth gradient. This clustering is accomplished here by 
combining these two physical parameters into a so-called weight function. The advantage of this 
approach is that several methods exist for the generation of grids that concentrate according to 
some given weight function. 

The first work on depth clustering using boundary-fitted grids was done by Johnson and 
Thompson.637 They used a variational approach to generate grids that cluster according to the 
water depths but they introduced hypothetical depths in order to make the grid adapt properly. 
In a further study by Kim' it is concluded that this variational approach is less sensitive to weight 
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functions than the so-called control function approach (based on the solution of an elliptic partial 
differential equation system) because of constraints on smoothness and orthogonality. For these 
reasons the latter approach is adopted here. 

In this paper we first describe the control function approach for generating adaptive grids. This 
approach includes the evaluation of control functions (used to control the distribution of grid 
lines) from the arc length distribution on the boundaries, the curvature of the boundaries and 
from the given weight function. However, a disadvantage of this approach is that rapid changes in 
boundary curvature are reflected in the flow region. To remove this undesired effect we introduce 
a lowpass filtering of the boundary curvature term. Next we describe how to evaluate the depths 
and the depth gradients at the grid points. When this step is completed it is an easy task to 
determine the weight functions needed to generate the adaptive grid. However, for computational 
reasons this procedure is only applied to evaluate the initial grid. During the iterative solution of 
the grid equations, the weight functions are updated. Finally, the capability of the scheme 
described above is demonstrated by showing examples of grids generated for a Danish fjord. 

2. THE CONTROL-FUNCTION APPROACH FOR GENERATING ADAPTIVE GRIDS 

One of the most well-known and well-established methods for generating boundary-fitted grids is 
to solve an elliptic partial differential equation ~ y s t e m . ~  In two dimensions the co-ordinates of the 
grid points, (x, y), are generated by9 

g22(xg + Pxg) + gii(x,, + Qx,) - 2912~<, = O ,  

g22(~(5 + 0,) + gii(y,, + QY,) - 2 ~ 1 2 ~ 5 ,  =O, 
(1) 

where 

911 =x: + Y: ,  

s1z=xcxq + YcY,, (2) 

922=x,: + Y $  
From these equations the co-ordinates of the grid points are determined from a specified 
distribution of curvilinear co-ordinates ( r ,  q) .  P and Q are control functions used to control the 
quality of the grid. Originally these functions were evaluated in a manner that ensures that the grid 
lines generally follow the boundary point distribution. This yields control functions of the 
form', lo  

The terms A, and A ,  can be interpreted as contributions from the rate of change of arc length 
spacings in the t- and ?-direction respectively. The terms s1 and s2 are the arc length spacings 
along the 5- and q-co-ordinate lines. Finally, u1 and K ,  are the curvatures along the q- and l-co- 
ordinate lines (the crossing grid line). Each of the six terms in (3) are evaluated individually on the 
appropriate boundaries and then interpolated into the field." 

All the derivatives in (1) are approximated by central differences. The discretized equations are 
then solved by point relaxation (SOR). 

Most of the methods that have been used to generate adaptive boundary-fitted grids are based 
on an equidistribution statement, i.e. grid points are closely spaced in regions of large weight 
functions and vice versa. It can be shown that this equidistribution principle is equivalent to 
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introducing control functions in (1) given by' ' 7  

where W ,  and W2 are weight functions used to cluster points in the 5- and ?-direction 
respectively. The first terms in these equations evaluate the control functions in each direction 
from the variation of weight in that direction, while the additional terms take the transverse 
variation into account. 

In practice it is convenient to use a linear combination of the geometric and the adaptive 
control functions. Thus 

p = P, + C,P,, 

Q = Qg + CwQw, 
where C ,  is an arbitrary parameter is used in the generation equations (1). 

In practice it is most convenient to divide the flow domain into a number of subregions and 
generate the grid independently for each subregion. In order to maintain the continuity of the 
entire grid it is necessary to transfer information over the interfaces during the iterative solution 
of (1). 

3. FILTERING OF THE CURVATURE TERM 

A disadvantage involved in using the grid generation system (1) is that a rapid variation in 
boundary curvature (such as a slope discontinuity) is propagated into the field (see Figure 1). The 
source of this unwanted effect, which particularly limits the quality of adaptive grids, can readily 
be identified as the curvature term in (3). In order to eliminate this problem a lowpass filtering is 

Figure 1. Grid generated from the elliptic generation system without filtering of the curvature term. It is clearly seen how 
the slope discontinuity occurring on the left boundary is propagated into the field 
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Figure 2. Grid generated for the same region as in Figure 1 with a lowpass-filtered curvature term 

int r~duced.’~ I f j  denotes the jth grid point on the appropriate boundary, the filter is defined by 

ti;” = +t i j - l  + +ti j  + $ t i j + , ,  

where ti$’) is the value of t i j  after filtering. Preliminary numerical experiments showed that the best 
results were obtained if the filter was used iteratively three or four times. Figure 2 illustrates the 
effect on the grid of the boundary curvature filtering. By comparison with Figure 1 it is clearly 
seen that the slope discontinuity is not reflected in the field after filtering. 

Our results show that this filtering technique improves the smoothness of the grid. Further- 
more, the numerical solution of the grid generation equations (1) converges faster. This is 
particularly true when generating adaptive grids. 

The amount of filtering might be a bit excessive and might smooth out curvature variations 
even when they do not occur abruptly. However, in the present application no such problems 
were encountered. An alternative procedure would be to use a smaller amount of filtering, 
coupled with lower weight being placed on the curvature terms in (3). It is the authors’ belief that 
the latter procedure will not produce significantly different grids. 

4. EVALUATION OF DEPTH- AND DEPTH-GRADIENT-DEPENDENT WEIGHT 
FUNCTIONS 

4.1. Choice of weight functions 

gradients. It is thus natural to choose the weight function as 
The purpose of this work is to generate grids that cluster according to water depths and depth 

W,(x ,y )= W,(x,y)= W(x,.Y)= 1 +c,f+c,IVfl ,  (7) 
where c1 and cz are arbitrary constants. In (7), f is to be interpreted as a dimensionless water 
depth and lVfl as the absolute value of the corresponding (dimensionless) depth gradient. The ‘1’ 
in (7) ensures that the weight function never becomes zero (or close to zero), which would produce 
values of the control functions (see (4)) that are infinite (or very large). Similarly, adaptation to 
shallow regions could be accomplished by choosing W(x, y )  = ( 1  + c1 f)- l .  
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4.2. Evaluation of depths at grid points 

In practical applications the water depths are only known at a number of randomly distributed 
points. The grid generation system (l), however, needs the values of the weight functions at the 
current grid points (the grid generation equations are solved by an iterative method). In order to 
accomplish this we have somehow to evaluate the water depths at the current grid points from 
the depths at  the points where it is known. In the present work the evaluation is made by 
introducing a bilinear interpolation scheme that locally approximates the depth profile as a plane 
surface. The scheme is given by 

f ( x ,  y) = ax + by + C, (8) 
where the coefficients a, b and c are evaluated form three depth points close to the grid point in 
question. The interpolation error is reduced if these points generally surround the grid point in 
question. In this work the surrounding depth points are chosen in a manner that ensures that the 
grid point lies inside the triangle formed by these depth points5 (see Figure 3). In the present 
application no problems were encountered in finding the three forming points of the triangle, 
except when the grid point and points # 1 and # 2  were lying on a straight line (the boundary 
points are added to the depth points). However, other examples exist where the forming points 
cannot be found. In these cases the three depth points closest to the grid point should be used in 
the bilinear interpolation. 

As the search for surrounding depth points is very CPU-time-consuming, the procedure 
described above is only used to evaluate the depths at  the initial and final grid points. During 

Figure 3. Choice of depth points for use in the evaluation of the depth at the grid point in question. Point # 1 is chosen as 
the nearest point to the grid point. Point #2 is chosen as the nearest point to the grid point that has an angle of 
intersection with point # 1 greater than 90". Point # 3 is chosen as the nearest point to the grid point that lies in the region 
between the backward extensions of the vectors from the grid point to the points # 1 and # 2. This procedure ensures that 
the grid point lies inside a triangle formed by points # 1, #2 and # 3 (The method and figure are outlined in Reference 6.) 
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the iterative solution of the grid generation equations the weight functions are updated by 
application of the chain rule as explained in Section 4.4. 

4.3. Evaluation of the depth gradient 

Once the depths at the grid points are known it is straightforward to evaluate the depth 
gradient, In Cartesian co-ordinates it is given by 

where x and y denote unit vectors in the x- and y-direction respectively. The derivativesf, and f, 
are easily determined from the basic transformation relations,' i.e. 

where J denotes the Jacobian of the transformation from curvilinear to physical co-ordinates and 
is given by 

J = X<Y, - X,Yg. (1 1) 

It should be noted that it is the absolute value of the gradient that is used in the weight function 
(see (7)). 

4.4. Updating of the weight function 

Since the grid generation equations are solved by an iterative method, the grid moves during 
the solution of the grid system. For this reason it is necessary to update the weight function at the 

North Sea 

Figure 4. Boundary geometry and depth contours for Ringkoebing Fjord. Contour curves correspond to depths of 
0, 1, 2, 3 and 4 m respectively. In the present test case no depth contours are included for the North Sea region 
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grid points after each iteration. Since the procedure described in Section 4.2 requires too much 
computer time, it is only used to determine the depths at the initial grid points. Instead, the chain 
rule is applied to update the weight function at each grid point. This yields 

A W = W,AX + W,,Ay, (12) 
where A W is the change in value of the weight function and Ax and Ay account for the movement 
of the grid point between two successive iterations. The derivatives in (12) are determined by the 
transformation relations 

1 
wx = T ( Y ,  w, - Y ,  w,,, 

w, = $- x q  w< + x< w,,. 
1 (13) 

To solve the hydraulic flow equations, the grid generator should supply both the grid points 
and the associated water depths. Since preliminary results showed that the updating procedure 
described by (12) resulted in rather inaccurate depths, the procedure described in Section 4.2 is 
used again after the grid equations have converged in order to produce more accurate depths. 

5. APPLICATION TO RINGKOEBING FJORD 

In order to demonstrate the capability of the scheme described above, grids were generated for 
Ringkoebing Fjord, which is located on the Danish North Sea coast. The geometry and the depth 
contour of the fjord are illustrated in Figure 4. The geometry is complicated by a small, long and 

North Sea 

Figure 5. Non-adaptive grid for Ringkoebing Fjord generated without filtering of the curvature term (C, = 0) 
(geometric control functions only) 
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narrow island in the fjord. The depth varies from zero at  the boundaries to a maximum depth of 
4.7 m in the middle of the fjord. 

Figures 5 and 6 show grids generated without and with lowpass filtering of the curvature term 
respectively. It is clearly seen that the filtering greatly enhances the smoothness of the grid. 

The adaptive grids were generated using 544 randomly distributed depth points with known 
depths (read from a chart) using the non-adaptive grid generated by (1) (C, = 0) as an initial grid 
(see Figure 6). The computer code automatically adds the boundary points to the depth points 
with a depth equal to zero at the former. 

The capability of generating depth-clustered grids is illustrated in Figures 6-8 (cl = 1.0, 
c2  = 0.0, C ,  = 0.0, 1.5 and 2.0 respectively). It is clearly seen how the grid lines move away from 
the boundaries towards regions of large depths and that the amount of depth clustering can be 
controlled through the parameter C,. 

Figures 6, 9 and 10 (cl = 0.0, c2 = 1.0, cw = 0.0, 1.5 and 2.0 respectively) demonstrate that the 
method is capable of generating grids that cluster according to the depth gradient. The grids, 
however, seem to suffer from a lack of smoothness. A more thorough examination showed that 
some peaks occurred in the numerically evaluated depth gradient profile. These peaks can be 
eliminated by introducing an appropriate smoothing of the weight function. This smoothing 
enhances the smoothness of the grid. 

When a valley approximately aligned with one family of grid lines exists in the geometry, a 
proper grid will be one with cells that are relatively long in the direction along the valley 
compared with that across. This cannot be accomplished with the use of a single weight function, 
since this will tend to produce cells of unit aspect ratio. However, the proper adaptation can be 
accomplished by using separate weight functions (see (4)) along the two families of grid lines, each 
reacting to the depth gradient in that direction. 

Not -th Sea 

Figure 6 .  Non-adaptive grid for Ringkoebing Fjord generated with lowpass filtering of the curvature term (geometric 
control functions only) 
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North Sea 
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Figure 7. Adaptive grid generated for Ringkoebing Fjord (cl = 1.0, c2 = 00, C ,  = 1 '5) (adaptation to depth) 

North Sea 

Figure 8. Adaptive grid generated for Ringkoebing Fjord ( c ,  = 1.0, c 2  = 0.0, C ,  = 2 .O) (adaptation to depth) 
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Nori :h Sea 

, L 

Figure 9. Adaptive grid generated for Ringkoebing Fjord (cl = 00, cz = 1.0, C ,  = 1.5) (adaptation to depth gradient) 

North Sea 

Figure 10. Adaptive grid generated for Ringkoebing Fjord (c, = 0.0, c2  = 1.0, C ,  = 2.0) (adaptation to depth gradient) 
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North Sea 

Figure 11 .  Adaptive grid generated for Ringkoebing Fjord (c, = 1.0, c 2  = 3.0, C ,  = 1.5) (adaptation to both depth and 
depth gradient) 

Finally, Figure 11 (cl = 1.0, c2 = 3.0, C, = 1.5) shows that it is possible to generate grids that 
cluster both in regions of large water depths and in regions of large depth gradients. 

6. CONCLUSIONS 

A scheme for generating grids that cluster according to water depths and depth gradients has 
been introduced. The scheme is applicable to arbitrary two-dimensional flow regions and is based 
on the well-known control function approach for generating adaptive grids. This approach 
includes the evaluation of control functions from the arc length distribution on the boundaries, 
the boundary curvature and from depth- and depth-gradient-dependent weight functions. As a 
novelty, a lowpass filter is introduced which enhances the smoothness of the grid by eliminating 
the rapid fluctuations of the curvature term. 

Future research is directed towards the adaptation to a valley approximately aligned with one 
family of grid lines such that the cells are relatively long in the direction along the valley 
compared with that across. 
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